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Not a new thing…

• Lots of work on explanations back in the 
1980s and 1990s

• neoMYCIN, etc to explain expert 
systems

• Ben Shneiderman versus Pattie Maes 
debate in the 1990s

• Transparency and trust important
• Also work on autonomous agents and 

decision-making in the early 2000s
• But really ramped up since 2010s with rise 

in machine learning and black-box models

Mycin: Is Meningitis a hospital acquired illness?
Doctor: why?
Mycin: [2.0] this will aid in determining the orgamisms that might be causing the 
infection
It has already established
[2.1] the infection that requires therapy is meningitis
[2.2] organisms were not seen on the stain of this pending csf culture
[2.3] the type of infection is bacterial
[2.4] neurosurgery is not one of the relevant items of patient 100
[2.5] the age of patient 100 is greater than 25
therefore if [2.6] the infection was acquired while the patient was in hospital then 
there is evidence that the organisms that might be causing the infection are E 
coli(0.75) staphylococcus-coag-pos(0.3) pseudomonas-aeruginosa(0.3)
klebsiella-pneumoniae(0.5)
Doctor: How 2.3
Mycin: The following rules concluded about the likelihood that the type of the 
infection is bacterial:
[2.7] RULE148 (0.19)
[2.8] RULE500 (0.51)
[2.9] RULE501 (0.95)
[3.0] RULE502 (0.97)
[3.1] RULE526 (0.98)
[3.2] RULE504 (0.97)
[3.3] RULE524 (0.98)



Regulation, standards and guidelines

• Industry-led by tech giants
• Microsoft’s Guidelines for Human-AI Interactions 
• Google’s Responsible AI practices and People+AI Handbook
• IBM’s Everyday Ethics for Artificial Intelligence
• Fujitsu’s AI Ethics Impact Assessment Practice Guide

• EU Assessment List for Trustworthy Artificial Intelligence (ALTAI)
• EU AI Act (in draft)

• High harm applications need to be assessed and transparent
• Generative AI will have to be transparent



Transparency



So what is AI “transparency”?

• How the AI model works 
• Why a specific prediction was 

made by the AI …or not

• Currently somewhat overlooked:
• Why was the model developed 

in the first place
• What training data was used to 

develop the model
• How was the model evaluated
• How good is it
• What biases or blind spots 

does it have
• What decisions about the AI 

were made during its 
development
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4) AI testing and evaluation. In the previous stage, a small portion of data is kept apart for evaluating and
testing the AI model after training. The testing phase will provide information on how robust and accurate the
model is, and if it works as expected. In general, models should not make too many mistakes, but they are never
100% accurate.

5) Deployment. Once the AI model is ready to be deployed, it will be integrated into a system (for instance as
part of a smartphone application) that users can interact with and use. The AI model is applied to the information
a user inputs to produce an output or decision (e.g., cat or dog, loan approved or rejected, etc.).

Fig. 1. AI system development process.

Following this general introduction, we provided a recruitment scenario to motivate the use of a hypothetical AI
system. The participants were asked to imagine a scenario in which a new AI recruitment tool is to be developed to help
an organisation’s HR team to screen and rank applicants for a preliminary interview. The hypothetical tool would be
trained to distinguish between candidates who meet or do not meet essential and desirable criteria in a job description.
The AI tool would process the potential candidate’s CV and cover letter information and email them automatically if
they had been selected for a preliminary interview.

We asked participants to consider the aforementioned scenario and to report their perception of how fair they
expected the AI tool’s decision-making would be using a 5-level Likert scale. We also asked whether, in their opinion,
AI should play a role and to justify their answer, and, in addition, to describe any hiring situation where they had been
treated unfairly and why they thought it was unfair.

Finally, we captured participants’ perspective on AI fairness. We �rst asked them to rank statements that encapsulate
common fairness concepts currently found in the literature:

(A) Similar people will be treated in the same way.
(B) Di�erent groups of people who are protected by law (e.g., gender, age, etc.) will not be disproportionately

disadvantaged.
(C) People will be treated the same whether they are protected by law (e.g. gender, age, etc.) or not.
(D) People a�ected by a decision are treated with dignity and respect.
(E) The process to make decisions was logical and objective.
(F) The process to make decisions was explained to people and made transparent.
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Explainable AI (XAI)



Explainable AI (XAI) vision (2016)

Calibrated / 
appropriate 

trust



Motivation for XAI

Model understanding is absolutely critical in several domains, particularly those 
involving high potential for harm, to support debugging, bias detection and 
recourse



Lots of work to make ML ‘explainable’

• Global explanations:
• Exposing the model

• Local explanations:
• Exposing (combination of) 

features that contribute to a 
decision

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad

model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.
Before observing the explanations, more than a third

trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [21],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [20] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.
Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to di↵erent kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not su�cient. Note that (author?) [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5� 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or e�ciency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coe�cients on the
gradient is di�cult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.
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Local explanations



LIME: Local Interpretable Model-Agnostic 
Explanations

• Explains important feature that led 
to a decision

• Uses a post-hoc explanation on a 
simplified model 

• Another popular method which 
outputs feature importances: 
SHAP 

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad

model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.
Before observing the explanations, more than a third

trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [21],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [20] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.
Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to di↵erent kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not su�cient. Note that (author?) [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5� 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or e�ciency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coe�cients on the
gradient is di�cult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.
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Prototypes/Example

• Use examples (synthetic or natural) to explain individual predictions
• Identify instances in the training set that are responsible for the prediction of a 

given test instance
• Identify examples (synthetic or natural) that strongly activate a function 

(neuron) of interest



Counterfactual Explanations

What features need to be changed and by how much to flip a model’s prediction?

[Mothilal et al 2020]



Saliency Maps

Input Prediction

Junco Bird

What parts of the input are most relevant for the model’s prediction:  ‘Junco Bird’?

Saliency Map



But beware: “explanation” might be misleading

Gradient ⊙ Input

Guided Backprop

Guided GradCAM

Model	parameter	randomization	test	

Adebayo, Julius, et al. "Sanity checks for saliency maps." NeurIPS, 2018.

https://arxiv.org/abs/1810.03292


Global explanations



Representation Based Explanations

[Kim	et.	al.,	2018]

Zebra
(0.97)

How important is the notion of “stripes” for this prediction?



Model Distillation

Model	
Predictions

Black	Box	
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data	

Explainer
Simpler,	interpretable	model
which	is	optimized	to	mimic	

the	model	predictions



Human-Centric Explanations



Explainability versus Interpretability

• Explainability = system-centric ability of an AI system to explain itself

• Interpretability = human-centric ability of a user to build an appropriate 
mental model that guides interaction with the AI system

• Understanding of how the system works
• Being able to use the system successfully
• Being able to ’trouble-shoot’ system and fix ‘mistakes’



Mental Models

• A mental model is a kind of internal representation in someone's thought process 
for how something works in the real world

• Users build mental models to guide how they interact, behave or fix things when 
they go wrong through

• Extending and adapting existing mental models
• Exploring and using a system
• Being taught or having things explained

See: 
- Norman 1983
- Johnson-Laird 1983



Lots of work to make explanations ‘useable’

• What should be explained?
• Global/local explanations, intelligibility types, etc.

• How should we explain?
• Natural language dialogue, textual explanations, visualisations, etc.

22



Intelligibility types

• What did the system do?

• Why did the system do W?

• Why did the system not do X?

• What would the system do if Y happens?

• How can I get the system to do Z, given the current context?

[Lim and Dey CHI 2009]



Explanation content versus explanation 
presentation/style

• What information is transmitted in an explanation versus its form and presentation
• E.g. decision confidence

0.67341
67% Accept / 33% Reject

I think it’s a little bit more 
likely that this application 

should be accepted. 



Different stakeholders = different explanations?

• End users / lay users (e.g. loan applicants)

• Decision makers / domain experts (e.g. doctors, judges)

• Regulatory agencies (e.g. FDA, European commission)

• Researchers, developers and engineers



Human-centric explainable AI (HCXAI) design

• Need to know who the user is

• Global or local explanations or both? 

• Global explanations
• How the model works
• The accuracy of the model
• Important features

• Local explanations
• Important features for this decision
• Decision confidence



Explanation “styles”

• What explanation styles do end-users prefer?

[Stumpf et al. IJHCS 2009]



Explanation styles

Keyword Rule Similarity



Results

• Explanation styles:
• Rule-based best understood
• Keyword-based also good but negative weights problematic (absence 

of features)
• Serious understandability problems with Similarity-based
• No clear overall preference, very individual



Explanation

Feedback/Control

Future improved 
behaviour

Improved mental model,
satisfaction

Explanatory debugging for interactive machine 
learning

See: 
- Stumpf et al. IJHCS 2009
- Kulesza et al. TiiS 2011
- Kulesza et al. CHI 2012
- Das et al. AI 2013
- Kulesza et al. IUI 2015



Explanatory debugging principles

• Explanation
• Iterative
• Sound
• Complete
• Don’t overwhelm

• Control
• Actionable
• Incremental
• Reversible
• Honour feedback

Explanation

Control





Results

• More accurate system with less effort
• 85% for our system versus 77% without explanations at end of study
• Made adjustments to 47 messages while without explanations had to label 

182 messages

• With better understanding
• 15.8 mental model score versus 10.4
• The more you understand, the better you can make the system

• Does not overwhelm
• No difference in workload measures



HCXAI Challenges

• No explanations desired for certain tasks and contexts [Bunt et al. IUI 2012]

• Different people need different explanations [Gunning et al. Science Robotics 
2019]; lay users neglected at the moment

• Explanations calibrate trust and reliance [Bussone et al. ICMI 2015, Holliday et 
al. IUI 2016, Nourani et al. HCOMP 2019]; “placebic” explanations [Eiband et 
al. CHI 2019]

• Explanations might come from outside of the ML [Ehsan et al. CHI 2021]

• Explanations, and then what? [Wang et al. 2022]



Transparency for Fairness



Bias and fairness in AI

• Biased humans produce biased data which gets trained into model or AI can also 
go ‘rogue’ and produce a biased model

• Tools to find and mitigate bias are emerging
• 20+ different fairness metrics
• IBM AI Fairness 360
• FairML
• Google’s What-if 

• Fairness is a human value and can’t be necessarily reduced to metrics
• Need transparency to understand if something is fair (or not)
• Human-in-the-loop fairness tools such as FairVis, FairSight, etc

36



Towards Involving End-users in Interactive Human-
in-the-loop AI Fairness [TiiS 2022]

• Leverages work from Explanatory Debugging -> find and fix fairness ‘bugs’ that 
do not meet users’ expectations

• Loan application domain, anonymized dataset from a partner bank
• 388 participants recruited through Prolific, no technical or domain expertise 

needed
• Logistic regression, 61.8% accuracy, failed DI metric (0.718) on Nationality 

attribute
• Using the average weight value for each attribute suggested by the participants 

on an application, recalculated model

37
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Results

• Participants found UI useful and easy to use
• Used UI to find problematic decisions through sorting/filtering on Predicted 

decision, Confidence, Comparison
• 20% of assessed decisions judged unfair, mostly honing in on Nationality
• When looking at Nationality, unfair was applied to 57.6% of accepted citizens, 

14.4% for rejected foreigners
• 230 participants made weight changes to 3.71 applications on average
• Suggested weight changes improved DI to 0.814

• 50% of participants increased DI (M=0.91), other half decreased it (M=0.63)

39



Transparency for other kinds of AI



Problems with current explanations for generative or 
autonomous AI

• Explanations are delivered in visual form – no good for certain situations or 
people

• Explanations are meant to be pondered – not sure how to integrate into real-time 
settings for human-AI collaboration

• Currently we have a narrow view of explanations – what do we mean by 
‘explanations’ and what should be explained

• Why was the model developed in the first place
• What decisions about the AI were made during its development
• What training data was used to develop the model
• How was the model evaluated
• How good is it
• What biases or blind spots does it have



Model Cards [Mitchell et al. 2019]

• Model Details. Basic information about the model. 

– Person or organization developing model 

– Model date 

– Model version 

– Model type

– Information about training algorithms, parameters, fairness constraints or other 
applied approaches, and features 

– Paper or other resource for more information 

– Citation details 

– License 

– Where to send questions or comments about the model

• Intended Use. Use cases that were envisioned during development.

 – Primary intended uses 

– Primary intended users

 – Out-of-scope use cases 

• Factors. Factors could include demographic or phenotypic groups, 
environmental conditions, technical attributes, or others listed in Section 4.3.

 – Relevant factors 

– Evaluation factors

• Metrics. Metrics should be chosen to reflect potential realworld impacts of the 
model. 

– Model performance measures 

– Decision thresholds 

– Variation approaches 

• Evaluation Data. Details on the dataset(s) used for the quantitative analyses in 
the card. 

• – Datasets 

• – Motivation 

• – Preprocessing

• Training Data. May not be possible to provide in practice. When possible, 
this section should mirror Evaluation Data. If such detail is not possible, 
minimal allowable information should be provided here, such as details of the 
distribution over various factors in the training datasets.

• Quantitative Analyses 

– Unitary results 

– Intersectional results 

• Ethical Considerations 

• Caveats and Recommendations



Summary

• Transparency is required and XAI has made some strides towards opening the 
black box

• However, ‘transparency’ is a very vague term and ‘explanations’ can come in 
different forms

• Need for a human-centred approach to transparency and explanations
• Consider what explanations are used/useful for
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